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Abstract:  The concept of basic reproduction number  ( )NR   occupies a fundamental place in epidemic theory. The value of 

NR determines the proportion of the population that becomes infected over a course of epidemic. This study 

investigated Schistosomiasis transmission model and tested for the existence and uniqueness of solution using 

Lipschitz condition to ascertain the efficacy of the model. Findings showed that the stability of disease free 

equilibrium and the existence of an endemic equilibrium for the model are given in terms of key thresholds 

parameters known as the reproduction number
NR . The dynamics of the model diseases free equilibrium is 

globally asymptotically stable if 1NR   and the unique endemic equilibrium is globally asymptotically stable if

1NR  .  Some numerical simulations were also performed to illustrate our main results. 
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Introduction 

Schistosomiasis, also known as bilharzias classified as a 

Neglected Tropical Disease (NTD) is a dangerous health 

problem in developing countries. Despite remarkable 

achievements in Schoistosomiasis control over the past five 

decades, about 240 million people are estimated to be infected 

worldwide and more than 700 million people live in endemic 

areas (WHO, 2012; Guiro et al., 2017). Schistosomiasis is a 

parasitic disease caused by flatworms of the schistoma. 

Schistosomiasis are digenetic trematodes that spend their adult 

life in humans and previous stage in aquatic snails (Jordan and 

Webbe, 1993). Flatworms infect humans by penetrating the 

skin when exposed to contaminated fresh water (for example, 

lakes, ponds, dams, rivers) inhabited by fresh water snails 

carrying the parasite. 

There are two forms of Schistosomiasis, the urinary 

Schistosomiasis and intestinal Schistosomiasis. The 

Schistosomiasis is caused by Schistosoma haematobium while 

the intestinalSchistosomiasiscaused by any of the organism’s 

Schistosomain tercalatum, Schistosoma mansoni, 

Schistosomiasis japonicum and Schistosoma mekongi (Guiro 

et al., 2017). The parasites Schistosomes have to undergo 

through an intermediate host (snails in most cases) to 

complete their life cycle from eggs tomiracidia, cercaria and 

finally to adult worm. The prevalence of Schistosomiasis is 

high in tropical and sub-tropical regions, especially in poor 

rural regions without access to safe drinking water and 

adequate sanitation. 

Mathematical modelling of Schistosomiasis transmission is 

one of the most important tools to assess strategies for control 

against various infectious diseases (Castillo-Chavez and 

Thieme, 1994). Consequently, Mathematical modelling of 

Schistosomiasis transmission have been developed by many 

authors (Macdonald 1968; Jordan et al., 1993; Guiro et al., 

2017; Diaby, 2015). Macdonald (1968) was the first to use 

simple Mathematics models to study the transmission 

dynamics of Schistosomiasis. Edward (2010) developed a 

Mathematical modelling within host parasite dynamics of 

Schistosomiasis. In Diaby (2015), stability analysis of 

Schistosomiasis transmission model with control strategies 

was studied. The model incorporate several realistic features 

such as density-dependent birth rate of snails and reduced 

fecundity in snail hosts. Also, the analysis of thedeterministic 

model was made with respect to the stability of the disease 

free-equilibrium and the endemic equilibrium. However, it 

appears that the existence and uniqueness of solutions of the 

disease free-equilibrium and the endemic equilibrium was not 

investigated to the best of our knowledge. In this paper, we 

extend the model developed by Diaby (2015) and analyse the 

existence and uniqueness of solution of the model using 

Lipschitz condition to ascertain the efficiency of the model. 

Threshold analysis of 
NR  is also investigated and some 

numerical simulation are reported to buttress the theoretical 

results with respect to
NR . 

The mathematical model 

The model is developed to show the interactions between a 

complex life cycle of parasite Schistosoma and its host 

(human and snails). The parasite populations are modelled 

explicitly through the miracidia and cercaria denoted by 
mW

and 
cW  respectively. The total snails’ population at time t is 

given by ( )sN t and these comprises of the susceptible snail 

( ( ))sS t  and infectious snails ( ( ))sI t , thus

( ) ( ) ( )s s sN t S t I t  . Similarly, the total human 

population is denoted by ( )hN t also, comprises of the 

susceptible human ( ( ))hS t and infected human ( ( ))hI t and

( ) ( ) ( )h h hN t S t I t  . 

The following assumptions are made:  

(i) There is a constant per capital rate of exposure 

between host and sensitive parasite 

(ii) Individuals are born uninfected  

(iii)  population has a constant size 

(iv) There exist natural death in both the snails and 

human population  

(v) There exist the induce death in both the snails and 

human population 

(vi) All parameters are non-negative 
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(1.1) 

Where
sb  Birth rate of snails,     Fecundity, c

Competitive intensity 

sd   Death rate of snails, 
s Elimination rates of snails, 

S Rate at which snails are infected 

 Rate of parasite virulence, k  Birth rate of miracidia, 

 Death rate of the miracidia due the infection, 
md 

Natural death rate of the miracidia,   Birth rate of 

cercariae, 
cEd Death rate of cercariae, 

c  Elimination of 

cercariae, 
h  Rate at which human is infected, 

hd 

Natural death  Recovery rate of human,  Induced 

death  and Human recruitment (Mouhamadou, 2015) for 

more details). 

Basic properties of models  

(1) Positivity of solutions of the model: We consider the 

positivity of solutions of the system of equation (1.1) and 

show that all the state variables remain non-negative and the 

solutions of the system with positive initial conditions remain 

positive for all 0t  . 

Theorem 1  

Let the initial condition of the system (1.1) be; 

 (0) (0) (0) (0) (0) (0)( , , , , , ) 0
s s m c h h

ds dI dw dw ds dI  , 

then the solution set  

( ( ), ( ), ( ), ( ), ( ), ( ))s s m c h hs t I t w t w t s t I t
 

of the 

system (1.1) is positive for all 0t  . 
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Similar test was carried out for all other equations for 0t  . 

We also use the Lipschitz condition to verify the existence 

and uniqueness of solutions. 

Theorem 2 (Derrick et al., 1976) 

Let D  denote the region 

|
0t t | a ,

0 1x x  ,
1 2( , ,..., )nx x x x , 

0 1,0 2,0 ,0( , ,..., )nx x x x . 

And suppose that ( , )f t x satisfies the Lipschitz condition   

1 2 1 2( , ) ( , )f t x f t x k x x    

Whenever the pairs 
1( , )t x and 

2( , )t x  belong to D , where 

k is a positive constant. Then, there is a constant 0   such 

that there exists a unique continuous vector solution ( )x t of 

the system (1.1) in the interval
0t t   . It is important to 

note that the condition is satisfied by the requirement that,

i

j

f

x




, 1,2,3...i j  , be continuous and bounded in D . 

Let D  denote region 0 ,R  the equation have a 

unique solution. We show that  
i

j

f

x




, 1,2,3,4,5,6i j 

are continuous and bounded. 
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|
2

s

f

s




|=|

s mw |< , |
2

m

f

w




|=|

s ss |< , |
2

s

f

I




|=|

( )E sds     |< , |
2

c

f

w




|= 0 <  

|
2

h

f

s




|= 0 < ,|

2

h

f

I




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These partial derivatives exist, continuous and are bounded. 

Similarly, for 
3f to

6f . Hence from the above theorem, the 

model (1.1) has a unique solution. 

The basic reproduction number of the model  

The basic reproductive number 
NR is defined as the effective 

number of secondary infections caused by typical infected 

individual. It is obtained by taking the largest (dominant) of 

0 0( ) ( )i i
N

j j

f x v x
R

x x

    
    

       

, 

where if is the rate of appearance of new infected   in the 

compartments, iv   is the transfer individuals out of the 
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compartments by another means , 
0x  the disease free 

equilibrium 
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Taking the spectral radius of the next generation matrix, we 

have  
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Threshold analysis of parameters  

The impact of some major parameters like , ,s h    on the 

transmission dynamics of Schistosomiasis plays vital roles for 

the determination of control measure. This analysis will afford 

the opportunity of identifying the impact factor of these 

parameters on the basic reproduction number of the model; 

Theorem 4.1: For the reproduction number in (1.2) of the 

model equations (1.1), the threshold analysis of each 

parameter has an increasing effect on 
NR if 

0 0
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x


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
and 

decreasing effect on 
NR if

0 0
i
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
 for each of the 

parameters
ix  (Pelli et al., 2009). The threshold analysis of 

s  is  
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Fundamentally, positivity of an expression confirms a positive 

effect in the number of secondary infection rate. Hence, 

increasing in 
s (birth rate of snails), 

h (rate at which 

humans are infected),  (birth rate of cercariae), k (birth rate 

of miracida) increases the value of the basic reproduction 

number and make the equilibrium rate approaches endemic 

value. In other to control the disease, the birth rate of snails, 

cercariae, miracida and the rate at which humans are infected 

should be control and possibly brought to the barest 

minimum. 

 

 

Numerical simulation 

To understand the dynamics of the model, our system of equation (1.2) was simulated using the parameter values  

1000, 50000, 5000, 9000, 2000, 550, 0.0039, 0s S m c h h sS I w w S I           

0.025, 0.005, 0.406, 0.00232, 100, 0, 0s h cc k           . Our simulation showed that the 

diseases becomes endemic when the basic reproduction number 2.2331 1NR   . Also,

10, 0.05, 0.009, 10000, 50000, 550, 9000, 8000, 0.009c s s s h cS I I w              

2000, 0, 0.00232, 0.06, 0.0406, 0.00003, 2.5,h s h h mS k d d          

 

The basic reproduction number is 0.7219 1NR   , hence not endemics, the disease will die out with time. 

 

Discussion and Conclusion 

In this paper, the dynamics of Schistosomiasis has been 

presented. We have carried out qualitative analysis for the 

existence and uniqueness of the solution of the model and also 

solved for the positivity of the solutionof the model. The basic 

reproduction number of the model was calculated using the 

next generation matrix method.Threshold analysis of the basic 

reproduction number to the model parameter was performed 

to investigate the parameters that possess greater influence on 

the model. In terms of the basic reproduction number, it was 

observed that when 1R (less than unity) the diseases will 

die out with time and 1NR   (greater than unity), the 

0
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disease is at endemic point. Numerical simulation were 

carried out in order to verify some of the analytical results. 
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